Supernumerary Peronei in the Leg Musculature—Utility for Reconstruction

Vandana Mehta, MS; RK Suri, MS; Jyoti Arora, MS; Vandana Dave, MS; Gayatri Rath, MS

Muscular variations in the lower extremity are frequently encountered when performing cadaveric dissections. The utility of supernumerary muscles assumes importance in reparative foot surgery. The purpose of the current case study is to report the unilateral presence of double peroneal muscles in the evertors of the foot. The peroneal compartment of an adult Indian male cadaver was dissected during a demonstration class for medical undergraduates. Two bellies of the peroneal longus and brevis muscles were observed. The peroneus longus split into two bellies, superficial and deep, while the brevis displayed superficial/lateral and deep/medial bellies. These additional bellies gained attachment to the lateral calcaneal surface. Disorders of the peroneal tendons provide a basis for lateral ankle pain and instability. Anatomical variants have been associated with lateral ankle diseases. Magnetic resonance imaging can demonstrate these soft tissue variants, and detailed information on the anatomy of the crural region enables a surgeon to plan an operation. This study shows duplication of the peroneal muscle, which may have an impact on reconstructive surgery. (Chang Gung Med J 2011;34(6 Suppl):62-5)

Key words: supernumerary, peroneal muscles, lateral, ankle

Macalister has described various deviations of the peroneus longus (PL) muscle. Among these are its insertions by three tendons into the first, third and fifth metatarsal bones, a slip to the fifth metatarsal behind the brevis and a slip to the lateral malleolus. Only two anomalies of the peroneus brevis (PB) muscle were reported by Macalister, one a slip to the PL and the other to the abductor digiti minimi. Macalister also described the peroneus digiti quinti as a completely separate muscle arising from the lower fourth of the fibula under the PB in the groove in which its tendon runs, which is inserted into the extensor aponeurosis on the upper surface of the little toe. A chief function of the peroneal muscles is to provide the evasion movement essential to balance the opposing inversion movement. Recently, longitudinal tears or attrition of the peroneus brevis tendon (PBT) has been stated as a cause of lateral ankle pain. The combination of the PBT tears and chronic ankle instability has also received notice. Some researchers have reported that this lesion is found in as many as 37% of cadaveric specimens. There is a substantial risk of delayed or missed diagnosis of PBT tears. Magnetic resonance (MRI) or ultrasound imaging is recommended to increase the diagnostic accuracy in these patients. Ultrasonography has been suggested as an effectual means to establish the diagnosis of longitudinal tears of the PL tendon and PBT. Tendon size, shape, location, and integrity, as well as associated anatomic
abnormalities and variants, can be appraised with ultrasonography. The current report describes the unusual presence of double peroneal muscles, which to the best of our knowledge has not been elucidated in the anatomical literature. These duplicated peroneal bellies and tendons may be demonstrated accurately with ultrasonography prior to surgical intervention in this area. Furthermore, reconstructive surgeons need to take these supernumerary muscles into consideration when doing reparative procedures on the foot.

CASE REPORT

A routine anatomy dissection class revealed unilateral presence of double peroneal muscles on the left leg of an adult male cadaver (Figure). This was discovered for the first time after reviewing 100 lower limbs. The PL had a normal origin from the upper part of the lateral surface of the fibula. It subsequently divided into a larger superficial part and a smaller deep part. The point of division of the PL into its two bellies was 22.1 cm proximal from the tip of the lateral malleolus. The superficial part remained muscular and tendinous above the lateral malleolus and inserted in the normal way into the lateral aspect of the first metatarsal head. The deeper, smaller part of the PL became tendinous after a small 8.6 cm long muscular belly and inserted into the lateral surface of the calcaneum just below the lateral malleolus. The PB muscle originated from the lateral surface of the fibula as usual. It divided into two bellies 8.2 cm proximal to the tip of the lateral malleolus. One part was superficial and lateral, and the other was deep and medial. The superficial/lateral part became tendinous just above the lateral malleolus and inserted as usual into the base of the fifth metatarsal bone. The deeper medial part of the PB gained distal attachment to the lateral surface of the calcaneum 1.4 cm below the tip of the lateral malleolus. The distance between the insertion of the deeper parts of the PL and PB was 1.4 cm. Innervation to both extra bellies was derived from the superficial peroneal nerve. The remaining musculature and neurovascular structures showed no departure from the normal morphology.

DISCUSSION

We found no previous report of two supernumerary peroneal muscles in which one of the muscles took origin between the two peronei and the other from beneath the PB. They inserted onto the peroneal trochlea of the os calcaneus and dorsal digital expansion of the fifth toe respectively. A comparable case reported two different tendons arising from a single muscle instead of the PL and PB. The smaller tendon which was the PB analogue inserted at the base of fifth metatarsal and the larger tendon which represented the PL analogue to the base of first metatarsal bone. The peroneus quartus also originated from the same belly. That patient had operative exploration because of retromalleolar pain. Another study reported two supernumerary peroneal muscles bilaterally during a routine cadaveric dissection. The peroneus quartus muscle originated from the distal part of the fibula and the tendon of the PB, and attached to the peroneal trochlea of the calcaneus whereas the peroneus digiti quinti muscle originated as a small slip from the tendon of the PB, around the malleolus, attaching to the dorsal aponeurosis of the fifth digit. Furthermore, a small separate slip was observed to gain attachment to the fifth metatarsal base. Another report showed an unusual tripartite insertion of the PL unilaterally. In addition to the usual insertion onto the base of the first metatarsal bone, two additional slips gained attachment to the first dorsal interosseus and the plantar aspect of the first metatarsal bone. Therefore the first metatarsal bone received two slips of inser-

![Figure](image_url)
tion from the PL.\(^8\) The current study reports super-
numerary peroneal muscles from both the PL and PB
gaining attachment to the lateral calcaneal surface.

A bifid PB muscle leading to chronic subluxation
of the peroneal tendons has been described.\(^9\) Another MRI study confirmed that tears in the PB
tendon may result from anomalous distal attachment
of the PB.\(^10\) The distally pedicled PB muscle has
been established as a viable local flap substitute. The
PB was successfully transposed onto the distal third
of the leg for coverage of defects. Since the PL was
preserved, there was no loss of eversion function and
no postoperative complications were recorded.\(^11\) A
longitudinal vertical splitting of the PB muscle was
developed as a new technique to provide adequate
coverage of pretibial region defects. This was done
principally to avert any loss of function.\(^12\) We sug-
gest that with a double PB muscle, one muscle may
be safely transposed for such reconstructive maneu-
vers without jeopardizing function. These anomalies
may therefore be taken into account by orthopedic
surgeons when contemplating reconstruction in the
distal leg region. Transfer of the flexor digitorum
longus for posterior tibial tendon insufficiency is
routine. Occasionally, this muscle may be particular-
ly small or may have been previously used for trans-
fer. In this event, the PB muscle may be effectively
utilized for restoration of balance of the foot.\(^13\) The
imprecise pathogenesis of longitudinal peroneal ten-
don tears has led scientists to explore the reasons
behind lateral ankle pain and instability. The PB tend-
on is subject to friction as it lies in a retrofibular
position, and coupled with ankle trauma may result
in lateral ankle instability and incompetency of the
superior peroneal retinaculum. Finally all the above
mentioned events may exacerbate recurrent subluxa-
tion of the peroneal tendons.\(^14\) Longitudinal tears of
the PB tendon may lead to symptoms ranging from
mild pain to lateral ankle instability. Although the
exact pathophysiology is not clearly revealed, rea-
sons which may cause this condition include superior
peroneal retinaculum tears, avascular zones in the PB
tendon, degenerative processes and abrasion over the
calcaneofibular ligaments.

The anatomical reasons for PB tears include a
shallow fibular groove, a distally located muscle
belly of the PB, an anomalous low-lying peroneus
muscle belly and anomalous peroneus quartus and
peroneus tertius tendons.\(^15\) We hypothesize that the
incidence of double anomalous peroneal bellies
could possibly have a bearing on the pathogenesis of
chronic ankle instability leading to lateral ankle pain.
This could be a result of altering the ankle motion
mechanism. It has been established that MRI is the
best modality to categorize PB and PL degeneration,
hypertrophy, and anomalous muscle bellies and
accessory muscles such as the peroneus quartus.\(^16\)

Peroneal tendoscopy has emerged as an alternative
procedure for diagnosing peroneal tendon pathology
when MRI fails to identify peroneus quartus and PB
anomalies.\(^17\) Cavus foot surgery requires lengthen-
ing of the PL tendon as it influences all three compo-
nents of the idiopathic cavus foot which can be
accounted for by increased strength and activity of
the peroneus muscle, namely varus heel, increased
arch height and forefoot adduction.\(^18\) The basis for
lateral ankle pain and instability is frequently disre-
garded and is related to disorders pertaining to the
peroneal tendons. Anatomical variants have been
associated with lateral ankle diseases. MRI imaging
aids in diagnosing these soft tissue variants and
detailed information on the anatomy of the crural
region enables the surgeon to plan an operation. In
one MRI study, a bifurcated pattern of the PB was
seen.\(^19\) Our study showed a duplicated peroneal
muscle which may have an impact on reconstructive
surgery. Experiments using PL tendon allografts for
anterior cruciate ligament (ACL) reconstruction have
been performed.\(^20\) Clinicians asserted that since the
PL tendon is as strong as the ACL, it may act as a
replacement for it.

Conclusions

This study reports double peroneal muscles
which would be important for reconstructive foot
surgeons attempting to repair this area. Morphological variations of these muscles may be
demonstrated by procedures such as ultrasound,
MRI, and tendoscopy.

REFERENCES

1. Macalister A. Observation on muscular anomalies in the
human anatomy. Third series with a catalogue of the prin-
cipal muscular variations hitherto published. Trans Roy
Irish Acad 1875;25:1.
2. Otis JC, Deland JT, Lee S, Gordon J. Peroneus brevis is a
more effective evertor than peroneus longus. Foot Ankle

