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Recent completion of the sequencing of genomes from several mammals, teleosts and
invertebrates has shown that G protein-coupled receptors (GPCRs) are one of the conserved
groups of cell surface receptors with an ancient origin. GPCRs play important roles in
diverse physiological functions and are the most important targets for pharmaceutical dis-
coveries. Recent work based on the search for gene with structural similarity to LH, FSH
and thyroid-stimulating hormone (TSH) receptors in diverse genomes has led to the identifi-
cation of a group of GPCRs called Leucine-rich repeat-containing, G protein-coupled
Receptor (LGR). We present the genomic analyses of the evolution of LGR genes in the lit-
erature. (Chang Gung Med J 2006;29:2-8)
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Introduction

Recent completion of the sequencing of genomes
from several mammals, teleosts and inverte-

brates has shown that G protein-coupled receptors
(GPCRs) are one of the conserved groups of cell sur-
face receptors with an ancient origin.(1-3) GPCRs play
important roles in diverse physiological functions
and are the most important targets for pharmaceuti-
cal discoveries.

In the reproduction system, the interactions
between GPCRs and ligands also play important
roles in the regulation of gonadal development and
fertility. Extensive studies have been performed on
the interactions between luteinizing hormone (LH),
follicle-stimulating hormone (FSH) and their recep-
tors. It has been demonstrated that these receptors
are important in regulating follicular development,
ovulation, and steroidogenesis in females as well as
testicular development, spermatogenesis, and
steroidogenesis in males.(4,5)

Recent work based on the search for gene with
structural similarity to LH, FSH and thyroid-stimu-
lating hormone (TSH) receptors in diverse genomes
has led to the identification of a group of GPCRs

called Leucine-rich repeat-containing, G protein-
coupled Receptor (LGR).(6-8) All receptors in the
LGR sub-family contain a large ectodomain with
multiple leucine-rich repeats (LRRs) likely involved
in ligand binding, a seven-transmembrane domain
responsible for G protein activation, and a unique
hinge region between the LRRs and the transmem-
brane region (Fig. 1). Studies of LGRs from diverse
species suggest that LGRs can be subdivided into
three subgroups (group A, B and C) (Fig. 2). The
group A LGRs includes FSH receptor, LH receptor
and TSH receptor, important for signaling of the het-
erodimeric glycoprotein hormones FSH, LH, and
TSH, respectively. The group B LGRs comprises
mammalian LGR4-6, the functions and cognate lig-
ands of which remain unclear. The group C LGRs
consists of relaxin and INSL3 receptors, LGR7 and
8. All three groups of LGRs could be found in
insects, suggesting that the common ancestor of
these genes evolved early during metazoan emer-
gence.(8) The current review briefly summarizes our
recent studies on the characterization of LGRs and
the identification of their cognate ligands. These
findings allow further understanding of the physio-
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logical roles of the ligand-receptor pairs and reveal
the co-evolution of these receptors and ligands.

Characterization of the activation mechanisms
of group A LGRs

Earlier studies using mutated LH and TSH
receptors found in patients with male-limited preco-
cious puberty and nonimmune hyperthyroidism,
respectively, indicated that these diseases are associ-
ated with constitutive receptor activation as a result
of point mutations of key residues in the transmem-
brane VI region of these receptors.(9-11) Based on these
studies, we have performed detailed experiments on
constitutive activation using point mutations of LH
receptors and FSH receptors, and demonstrated that
the region important for group A LGRs activation
are mainly clustered in the hinge region, intracellular
loop 3 and transmembrane V/VI/VII.(12,13) These find-
ings allow a better understanding of the specific
domains of glycoprotein hormone receptors in ligand
interaction and signaling. Of interest, further experi-
ments revealed that these gain-of-function strategies
could apply to the related LGRs, including the fly
DLGR2 in group B and the human LGR7 and LGR8
of group C LGRs.(6,14) The understanding of the
downstream signaling mechanisms of these receptors
facilitates the identification of their cognate ligands.

Identification of relaxin and INSL3 as ligands
for LGR7 and LGR8 of group C LGRs, respec-
tively

Most of functional characteristics of the relaxin
signaling system has been obtained with a variety of
biochemical and molecular techniques before the
identification of the relaxin receptors. These studies
have suggested that relaxin signaling is important in
many reproductive events including the growth and
softening of the cervix, mammary gland and nipple
development, inhibition of uterine contractile activi-
ty, collagen remodeling, and dilation of blood ves-
sels.(15,17) Based on the search of human genome for
relaxin homologs, six additional relaxin family genes
including RLN2, INSL3, INSL4, INSL5, INSL6 and
INSL7/RLN3 have been identified.(18-22)

Subsequently, our studies have shown that the type C
LGRs are cognate receptors for relaxin and two relat-
ed peptides, relaxin and INSL3.(23-25) LGR7 is the
receptor for relaxin whereas LGR8 is the ligand for
INSL3.

Fig. 1 Structural conservation of LGR family. All members
in LGR family share a common structure with a large amino-
terminal ectodomain containing leucine-rich (LRR) repeats
for ligand interaction, a hinge region, and the seven transmen-
brane (TM) domains for downstream signal transduction.
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Fig. 2 The phylogenetic relationship between LGR mem-
bers. Based on their respective phylogenetic placement and on
the nature of their cognate ligand, LGRs could be subdivided
into three groups (Group A, B and C). FSHR Homo sapiens
(P23945), LGR4 H. sapiens (AF061443), LGR5 H. sapiens
(AF061444), LGR6 H. sapiens (AF190501), LGR7 H. sapiens
(AF190500), LGR8 H. sapiens (AF403384), Cg-LGRB C.
gigas (AJ549813), Ghra Anthopleura elegantissima (Z28332),
LGR Caenorhabditis elegans (NP_505548), DLGR1
Drosophila melanogaster (U47005), DLGR2 D. melanogaster
(AF274591), DLGR3 D. melanogaster (AAO39507), LHCGR
H. sapiens (M73746), TSHR H. sapiens (AAR07906), GRL
101 Lymnaea stagnalis (P46023). The tree was generated
using the alignment in CLUSTAL X and manual inspection.
Reproduced with permission from Luo et al. (unpublished).
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Disruption of the orphan group B LGR genes in
transgenic mice

Unlike the group A and group C LGRs, the lig-
ands and the physiological functions for the group B
orphan LGR4-6 subfamily in mammals are unclear.
In an attempt to elucidate the physiological roles of
this subgroup of orphan LGRs, we analyzed the phe-
notypes of mutant mice with a deletion of LGR4 or
LGR5 gene.

We generated transgenic mice using the secreto-
ry-trap approach with the trap vector containing the
N terminus of LGR4 fused with the β-galactosidase
protein driven by its endogenous promoter.(26) Taking
advantage of the expression of the fusion reporter
gene, we performed detailed analysis of the tissue
expression pattern of LGR4. The LGR4 gene showed
a wide tissue distribution including kidney, adrenal
gland, stomach, intestine, bladder, heart, brain, bone
and liver. Of interest, disruption of LGR4 gene led to
perinatal lethality and intrauterine growth retardation
associated with pronounced suppression of kidney
and liver growths. Most of the LGR4 null newborn
mice and some heterozygotes (~15%) died on the
first day after birth.(26) The observed perinatal lethali-
ty of both homo- and heterozygous LGR4 pups sug-
gests the importance of the LGR4 gene in embryonic
development and newborn survival.

Furthermore, LGR5 null mice were also gener-
ated by targeted deletion of this seven-transmem-
brane protein.(27) LGR5 null mice exhibited 100%
neonatal lethality characterized by gastrointestinal
tract dilation with air and an absence of milk in the
stomach. Gross and histological examination
revealed the fusion of the tongue to the floor of the
oral cavity in the mutant newborns (Fig. 3). The
observed ankyloglossia phenotype provides a model
for understanding the genetic basis of this craniofa-
cial defect in humans and a model to elucidate the
physiological role of the LGR5 signaling system dur-
ing embryonic development.

In addition to its role in craniofacial formation
during embryonic development, LGR5 may also play
important roles in adult life. A recent study demon-
strated the overexpression of LGR5 in human hepa-
tocellular carcinomas with β-catenin mutations, sug-
gesting that LGR5 may be involved in tumorgene-
sis.(28)

In flies, the DLGR2 gene has the same evolu-
tionary origin as the mammalian group B LGRs.

Interestingly, mutation of this gene in flies led to
major changes in development including the wing
expansion and tanning defects.(29) Therefore, group B

Fig. 3 Dilated gastrointestinal tract and abnormal craniofa-
cial development in LGR5 null mice (27). (A) The wild-type
LGR5 (+/+) neonates had milk in their stomachs (S), whereas
the LGR5 null (-/-) neonates had dilated stomachs without
milk. (B) The entire gastrointestinal tract of LGR5 null mice
was dilated without milk, whereas the wild-type mice had a
normal appearance. SI, small intestine. (C) In sagittal sections
of the craniofacial region, the LGR5 null mice showed fusion
of the tongue (T) to the mandible (M), whereas these two
regions are separated in the wild-type mice. Identification of
similar structures in the upper and lower jaws indicates the
sections were taken at the same level. I, developing upper
incisor; AB, developing alveolar bone of lower incisor. (D) In
transverse serial sections of the mandible region, the tongue
of LGR5 null mice was attached to the mandible, whereas the
tongue of the wild-type animals in the same region was con-
nected only in a posterior section. Similar sections are reflect-
ed by the morphology of the molar teeth (mt), and more ante-
rior sections are shown on the right. (E) Immunostaining of
LGR5 antigen in the epithelium of the tongue and the epithe-
lium and mesenchyme of the mandible at E14.5. Ab, anti-
body. The boxed area in the upper panel is enlarged in the
lower panels. Reproduced with permission from Mazerbourg
et al.(26)
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LGRs in both vertebrates and invertebrates are
involved in early development in contrast to mam-
malian group A and C LGRs found to be important
in different reproduction processes. This important
role of group B LGRs in early development is unique
and has not been described previously for the other
known glycoprotein hormone receptors. Thus, identi-
fication of the cognate ligands for group B LGRs and
the elucidation of the signaling pathway for these G
protein-coupled receptors become crucial for the
understanding of the molecular mechanisms and the
physiological roles of this LGR subgroup conserved
in vertebrates and invertebrates.

Evolutionary tracing of potential ligands for
the remaining orphan LGRs based on genomic
searches

Recently, we discovered bursicon as the cognate
ligand for DLGR2, the group B LGR in Drosophila
melanogaster.(30) We identified the chemical nature of
bursicon, the first heterodimeric cystine knot hor-
mone found in insects, and showed that this ligand
consists of two proteins encoded by the genes burs
and pburs (partner of burs). The pburs/burs het-
erodimeric binds with high affinity and specificity to
activate the G protein-coupled receptor DLGR2,
leading to the stimulation of cAMP signaling in vitro
and tanning in neck-ligated blowflies in vivo (Fig. 4).

Fig. 4 Bursicon, a heterodimer of two cystine-knot-containing polypeptides, is the cognate ligand for DLGR2 (30). (A)(Upper)
Immunoblot analyses of bursicon from P. americana ganglia extracts and conditioned media from 293T cells transfected with pburs
and/or burs. Samples were run under nonreducing and reducing conditions. Lane 1, ganglia extracts from P. americana; lane 2,
recombinant pburs/burs without epitope tags; lane 3, recombinant epitope-tagged pburs/burs; lane 4, recombinant pburs without a
tag; and lane 5, recombinant burs without a tag. (Lower) Stimulation of DLGR2 by P. americana ganglia extracts or conditioned
media from cells cotransfected with pburs/burs expression constructs (bursicon heterodimer), but not by the individual plasmid
(pburs or burs). Both wild-type and epitope-tagged bursicon heterodimers were tested. In addition, proteins eluted from the 28- to
33-kDa region of a SDS gel loaded with P. americana ganglia extracts also were tested. Ligand levels were determined from
immunoblots by using purified tagged bursicon heterodimers as a standard. (B) Neck-ligated fly bioassay. Recombinant bursicon or
P. americana ganglia extracts stimulated complete tanning of flies with a maximum score (5-6 points), whereas flies injected with
phosphate buffer (PB), pburs, and burs alone did not tan and received an average score of 0-0.3 points. In three separate experi-
ments, 6-10 flies were injected, and their tanning score was averaged. Reproduced with permission from Luo et al.(30)
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Our identification of two cystine knot-contain-
ing polypeptides as subunits for the heterodimeric
bursicon in insects, together with the demonstration
of specific binding and activation of a G protein-cou-
pled receptor with leucine-rich repeats, allow us to
trace the potential ligands for vertebrate LGR4-6, the
ortholog for the fly DLGR2. Comparison of verte-
brate genomic sequences with the insect pburs and
burs genes indicated that the insect genes are homol-
ogous to the vertebrate bone morphogenetic protein
(BMP) antagonist family of genes. Because BMP
antagonists are important during embryonic develop-
ment and organogenesis,(31,32) future studies may
reveal if they are cognate ligands for the orphan
LGR4 or LGR5 genes, which are also found to be
important during embryonic development.(26,27) Up to
the present, only some members of the BMP antago-
nist family have been found to be competitive antag-
onists capable of direct binding to BMPs,(31,33) and the
exact mechanisms of actions of most proteins in this
family are still unknown. More studies are needed to
confirm whether these cystine knot proteins are lig-
ands for vertebrate orphans LGR4/5/6. The eventual
identification of the cognate ligands for these orphan
receptors will advance our understanding of the
physiological roles of mammalian group B LGRs.

Conclusions
Genomic analyses of genes with similar struc-

tures to mammalian LH and FSH receptors allow the
identification of new LGR genes. Based on common
mutant phenotypes of receptors and ligands, the lig-
and-receptor relationships between INSL3 and
LGR8 as well as fly bursicon and DLGR2 have been
elucidated. These findings allow further analyses of
the co-evolution of the subgroup of LGRs and their
ligands. The present paradigm of studying the co-
evolution of polypeptide ligands and their receptors
are useful for understanding hormone signaling for
diverse receptors.
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